Mahmood Tabrizi

فهرست

Carl Friedrich Gauss caricature mahmood tabrizi Carl Friedrich Gauss caricature mahmood tabrizi

 Carl Friedrich Gauss caricature mahmood tabrizi

Carl Friedrich Gauss caricature mahmood tabrizi

Carl Friedrich Gauss caricature mahmood tabrizi

Johann Carl Friedrich Gauss (/ɡs/; German: Gauß [ɡaʊs] (About this sound listen); Latin: Carolus Fridericus Gauss; 30 April 1777 – ۲۳ February 1855) was a German mathematician and physicist who made significant contributions to many fields, including algebra, analysis, astronomy, differential geometry, electrostatics, geodesy, geophysics, magnetic fields, matrix theory, mechanics, number theory, optics and statistics.

Sometimes referred to as the Princeps mathematicorum (Latin for “the foremost of mathematicians”) and “the greatest mathematician since antiquity”, Gauss had an exceptional influence in many fields of mathematics and science, and is ranked among history’s most influential mathematicians.

Johann Carl Friedrich Gauss was born on 30 April 1777 in Brunswick (Braunschweig), in the Duchy of Brunswick-Wolfenbüttel (now part of Lower Saxony, Germany), to poor, working-class parents.[3] His mother was illiterate and never recorded the date of his birth, remembering only that he had been born on a Wednesday, eight days before the Feast of the Ascension (which occurs 39 days after Easter). Gauss later solved this puzzle about his birthdate in the context of finding the date of Easter, deriving methods to compute the date in both past and future years. He was christened and confirmed in a church near the school he attended as a child.

Gauss was a child prodigy. In his memorial on Gauss, Wolfgang Sartorius von Waltershausen says that when Gauss was barely three years old he corrected a math error his father made; and that when he was seven, he confidently solved an arithmetic series problem faster than anyone else in his class of 100 students. Many versions of this story have been retold since that time with various details regarding what the series was – the most frequent being the classical problem of adding all the integers from 1 to 100. There are many other anecdotes about his precocity while a toddler, and he made his first groundbreaking mathematical discoveries while still a teenager. He completed his magnum opus, Disquisitiones Arithmeticae, in 1798, at the age of 21—though it was not published until 1801. This work was fundamental in consolidating number theory as a discipline and has shaped the field to the present day.

Gauss’s intellectual abilities attracted the attention of the Duke of Brunswick, who sent him to the Collegium Carolinum (now Braunschweig University of Technology),[7] which he attended from 1792 to 1795, and to the University of Göttingen from 1795 to 1798. While at university, Gauss independently rediscovered several important theorems. His breakthrough occurred in 1796 when he showed that a regular polygon can be constructed by compass and straightedge if the number of its sides is the product of distinct Fermat primes and a power of 2. This was a major discovery in an important field of mathematics; construction problems had occupied mathematicians since the days of the Ancient Greeks, and the discovery ultimately led Gauss to choose mathematics instead of philology as a career. Gauss was so pleased with this result that he requested that a regular heptadecagon be inscribed on his tombstone. The stonemason declined, stating that the difficult construction would essentially look like a circle.

The year 1796 was most productive for both Gauss and number theory. He discovered a construction of the heptadecagon on 30 March.[ He further advanced modular arithmetic, greatly simplifying manipulations in number theory. On 8 April he became the first to prove the quadratic reciprocity law. This remarkably general law allows mathematicians to determine the solvability of any quadratic equation in modular arithmetic. The prime number theorem, conjectured on 31 May, gives a good understanding of how the prime numbers are distributed among the integers.

Gauss also discovered that every positive integer is representable as a sum of at most three triangular numbers on 10 July and then jotted down in his diary the note: “ΕΥΡΗΚΑ! num = Δ + Δ’ + Δ”. On 1 October he published a result on the number of solutions of polynomials with coefficients in finite fields, which 150 years later led to the Weil conjectures.

In 1801, Gauss announced that he had calculated the orbit of an asteroid by the name of Ceres. He also allowed some of his genius to be made public with the publication of Disquisitiones Arithmeticae, and consequently gained widespread fame

:

∮ S E ⋅ d A = Q ε ۰ , {\displaystyle \oint _{S}\mathbf {E} \cdot \mathrm {d} \mathbf {A} ={\frac {Q}{\varepsilon _{0}}},} {\displaystyle \oint _{S}\mathbf {E} \cdot \mathrm {d} \mathbf {A} ={\frac {Q}{\varepsilon _{0}}},}

دسته بندی ها scientists

دیدگاه